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The weighted-density-functional theory developed by us recently [Phys. Rev. E 47, 4088 (1993)] for in-
homogeneous ionic fluids is employed to calculate the solvation forces between two planar charged sur-
faces with an electrolyte solution confined between them. The restricted primitive model corresponding
to charged hard-sphere ions with continuum solvent as well as the molecular solvent model with charged
and neutral hard spheres representing the ions and the solvent, respectively, are used to represent the
constituents of the electric double layer formed near each of the two charged hard walls. The forces on
the walls are evaluated from the density distributions of the ions (and the solvent) obtained from the pro-
posed fully nonperturbative weighted density approach using position-dependent effective densities.
Neutral liquids and their mixtures are also studied as special cases. The calculated solvation forces as
well as the density distributions are shown to compare quite well with available computer simulation re-
sults. A rigorous first-principles calculation of the interaction energies between colloidal particles

through this approach is thus shown to be possible.

PACS number(s): 61.20.Gy, 61.20.Ne, 68.45.Da, 82.45.+z

I. INTRODUCTION

The density functional theory (DFT) proposed formal-
ly by Hohenberg, Kohn, and Mermin [1] is a versatile
and general approach for describing a many-particle sys-
tem in terms of its single-particle density [2]. The theory
has thus been a powerful tool for studying the equilibri-
um [3] and dynamical [4] properties of many-electron
quantum systems as well as the structure [5] of nonuni-
form neutral and ionic classical fluids [6,7] arising, for ex-
ample, in fluid-solid interfaces.

In DFT, single-particle density is the basic variable
and the grand potential of an inhomogeneous many-
particle system characterized by an external potential is a
unique functional of the density distribution, assuming a
minimum value at the true density. The exact form of
this functional is, however, unknown for an arbitrary in-
homogeneous density distribution. An important proper-
ty of this unknown functional (other than the explicitly
known potential-dependent part) is that it is universal
and hence the knowledge of this functional for a density
distribution corresponding to any suitable external poten-
tial should enable one to calculate the same for any other
arbitrary density. Unfortunately, this knowledge is often
restricted to some systems with uniform density and
hence the expression will not be sufficiently general to be
applicable directly to inhomogeneous densities. One can
therefore adopt a perturbative approach involving a func-
tional Taylor expansion with respect to the density inho-
mogeneity. Alternatively, one can demand that the sys-
tem with an inhomogeneous density distribution can be
locally mapped to a corresponding uniform system with a
different position-dependent effective density, which in
turn is determined from suitable weighted averages of the
actual inhomogeneous density function. Among these
so-called nonperturbative weighted density approaches
(WDA), the two successful ones for neutral liquids are
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due to Tarazona [8] and Denton and Ashcroft [9], who
evaluate respectively the expressions for the excess free-
energy density and the first-order correlation function of
the uniform system using the effective density [10]. Very
recently, we have extended and generalized the WDA of
Denton and Ashcroft [9], formulated [11-13] a WDA for
inhomogeneous ionic solutions, and also have applied the
formalism to two models for the electric double layer
(EDL) [14] in an electrode-electrolyte interface. In the
restricted primitive model (RPM), the electrolyte consists
of charged hard-sphere ions of equal size immersed in a
continuum solvent, while in the three-component
nonprimitive molecular solvent model (MSM), one con-
siders the neutral hard spheres to represent the solvent,
in addition to the charged hard-sphere ions. In both
cases, the electrode is modeled as a uniformly charged
infinite planar, polarizable, and impenetrable hard wall.
While our theory [11-13] is fully nonperturbative, there
have also been other approaches involving a partially per-
turbative procedure [15,16].

In the present work, we apply our theory to the case of
an electrolyte solution confined between two such
charged planar surfaces. This system of interacting dou-
ble layers has been of much current interest since the
forces between the two surfaces have been measured [17]
experimentally and are found to oscillate [18] between at-
traction and repulsion as a function of the distance be-
tween the walls. This so-called solvation or structural
force [18] observed for ionic as well as neutral liquids
arises essentially from the tendency of formation of an in-
tegral number of layers in the confined space between the
two surfaces. It has important consequences in determin-
ing the interaction between charged colloidal particles
[19] in a suspension, for which the inadequacy of the con-
ventional Derjaguin, Landau, Verwey, and Overbeek
(DLVO) theory [20] (especially at shorter distances) has
been well known. The DLVO theory corresponds to a
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continuum approximation and does not reflect these os-
cillations due to the molecular nature, although these are
crucial for a proper theoretical understanding of various
interfacial phenomena. A systematic improvement of the
DLVO potential in an alternative direction has also been
obtained [21] through systematic many-body corrections
using a density-functional theory for the counterions,
even with the point charge model. The oscillating solva-
tion force has also been predicted by computer simula-
tion for neutral liquids [22] as well as an RPM electrolyte
[23], although simulation results are not yet available for
the more realistic three-component MSM of an electro-
lyte solution. Integral equation theories [24] have also
been used for the study of solvation forces, but they can-
not be applied to more complicated systems, and simpler
approaches are therefore needed. Since DFT is a versa-
tile theory for studying an inhomogeneous density distri-
bution, we propose to apply this theory to predict the sol-
vation force between two planar surfaces in pure as well
as a mixture of neutral liquids and also in an electrolyte
solution using both RPM and MSM. The results can
directly be used to obtain the forces between colloidal
particles in a suspension, since planar surfaces are good
approximations for two such large spheres. After devel-
oping in Sec. II the weighted density-functional theory
for the calculation of the density distribution and the sol-
vation forces in ionic (and also neutral as a special case)
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systems, we present the numerical results in Sec. III, and
concluding remarks in Sec. IV.

II. WEIGHTED DENSITY-FUNCTIONAL THEORY
FOR IONIC AND NEUTRAL LIQUIDS

We consider an electrolyte solution consisting of two
ionic and one neutral (solvent) components, modeled as
charged and neutral hard spheres, respectively, confined
between two infinite parallel planar uniformly charged
hard walls of surface charge density 0. The quantities p,
d,, and q, are the bulk density, the hard-sphere diame-
ter, and the ionic charge corresponding to the component
a. Here, a=1 and 2 are used to represent the positive
and negative ions and a=0 the solvent component.
Clearly, g, =0 and for symmetric electrolytes with identi-
cal hard-sphere diameters, which we consider here for
simplicity, one has ¢, = —¢q, and d,=d,. Assuming the
two walls to be located at z =0 and z =h, respectively,
the resulting external potential u,(z) and the inhomo-
geneous density distribution p,(z) of each component a
in the confined region vary only along the perpendicular
(z) direction.

Within the framework of DFT of an inhomogeneous
liquid mixture, the grand potential Q for this system at
temperature T can be expressed [10] as the density func-
tional given by

Qipa} 1= (ks TS, [drpD){In[pl(IA3]—1}+(1/26) 3 3 quqp [ [ dridrp,(r))pgr,)/Ir;—1)|
a a B

+FE[{pa) 1+ Fa{pa) 1+ 3 [ drlug(t)—p,lpa(r)+2m0%h /€, (1)

and the pressure acting on each wall can be obtained
from the definition

20

plh)=— h

(2)

Tiug)

Here, kg is the Boltzmann constant, A, and p,, represent,
respectively, the de Broglie wavelength and chemical po-
tential corresponding to the ath component, and € is the
dielectric constant of the medium. The last term in Eq.
(1) represents the direct Coulomb interaction between the
two charged surfaces, and the other energy components
have their usual significance [11-13].

Minimizing the grand potential of Eq. (1) with respect
to density and evaluating the chemical potential for the
uniform bulk density, one obtains the expression for the
equilibrium density distribution for species a in the re-
giond,/2<z<h —d_,/2 between the two walls, given by

a¥(z)
puter=plenp | — L4 ez ) eI (p0))
B
FegNzi{pa}) =N (p]) |, 3)

where 1(z), the mean electrostatic potential arising from

|
the external surface charges and the internal ionic distri-
butions, is given by

Wz =(4n/e) [ " dz'(z =213 qupalz)+ R /2), (@)

with the midplane potential ¥(h /2) determined from the
electroneutrality condition

fohdz’zqapa(z’)+20=0 . 5

The quantities ¢ ’"(r,) and ¢{**/(r,) in Eq. (3) represent,
respectively, the hard-sphere and electrical contributions
to the first-order correlation function defined as the func-
tional derivatives

g (1) =—(kgT) " '8F [ {pa}1/8palry) - (6)

The expression for pressure p (k) at the surface due to
the confined liquid, as given by Eq. (2), can now be evalu-
ated using Eq. (1) for the grand potential and
Eq. (3) for the density distribution in the region
d,/2<z<h—d,/2, to obtain

p(h)=(kgT) 'S po(dy/2;h)—2m0% /€ , @)

where p,(d,/2;h) represents the contact density of
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species a when the wall separation is A. One finally ob-
tains the force per unit area between the two walls im-
mersed in the liquid as the difference

f(h)=p(h)—p(e)
=(kgT) 7" [ palda/2:0) =3 poldy/2;0) ), (8)

where p,[ =p( )] represents the pressure of the coexist-
ing bulk fluid, corresponding to an infinite separation be-
tween the walls. Equation (8) for f(h) can easily be eval-
uated from the density distributions of the ionic and sol-
vent components obtained from Eq. (3).

Exact explicit expressions for the density functionals
for the first-order correlation functions ¢ and ¢V in
the density equation (3) are however not known for a
nonuniform density distribution. We have recently pro-
posed [11,12] an approximation scheme for evaluating
them from the knowledge of the same for the correspond-
ing system of uniform density. In this WDA, both the
quantities ¢!’ and c!Vel for the nonuniform system are
obtained from their homogeneous counterpart com-
ponents evaluated at suitable effective densities, i.e.,

C&l)hs(r;{ ])=~(1)h5[ﬁ(a)(r)]

"M“ ||M~

e P (0], (9a)

(l)el
Ca

(l)el[p eﬁ)(r )], (9b)

where the first-order correlation function components
clg™ and ¢ for a uniform system are obtained
through functional integration of the corresponding
second-order correlation functions z " and ¢ (2, and
one has =34z 1), The effective densities 5 ;,‘;‘ (r) and
p&(r) are obtalned from weighted averages of the actual

nonuniform density distributions, viz.,

2 fdrpﬁ(r whs[lr—r';p{@(r)]  (10a)
and
pE(r)=p @ r)
+B§1 fdr’pﬁ(r')wf}ﬁﬂr—r Lp&(r)],  (10b)
where
““’e’(r)—z fdrpﬁ(r’)w [r—r';pi@r)] . (10c)

The expressions for the weight functions waﬁ and w¢
have also been derived [12] and are given by

wr—r;p) =t A(Ir—r'l;p)/{(8/3p)[c ™))} ,
(11a)

/{[8/9p][e 4u(p)]}
(11b)

leﬁ(if_l"kﬁ) %(Z)el(h. r'l;p)

CHANDRA N. PATRA AND SWAPAN K. GHOSH 49

for a,=0,1,2 and a,B=1,2, respectively. Other com-
ponents of wfz'B involving the solvent component (a or
B=0) vanish.

For the uniform mixture of charged and neutral hard
spheres (corresponding to the MSM) under consideration,
analytical expressions for the correlation functions z (2"
and ¢ ﬁf’e‘ have been obtained by Ashcroft and Langreth
[25] and Waisman and Lebowitz [26] and can be used to
calculate the weight functions as well as the other quanti-
ties. The main expressions have been reported elsewhere
[12]. As limiting cases, one can obtain the expressions
for RPM electrolyte and also for neutral liquids and their
mixtures.

Thus, using the equations for density, potential, corre-
lation functions and weighted densities, one can easily
calculate the inhomogeneous density distribution of the
ions and the solvent molecules in the interfacial regions
near the two walls. Using the calculated densities (values
at contact) in Eq. (8), the solvation forces between two
surfaces immersed in liquids can be obtained.

ITI. RESULTS AND DISCUSSION

We have solved the nonlinear integral equation (3) for
density along with Egs. (4) and (9)-(11), using discretiza-
tion with a uniform mesh and iterative numerical pro-
cedures until convergence is reached. The trial densities
used for the two ions and the solvent correspond to a su-
perposition of the modified Guoy-Chapman densities [14]
for the EDL at the two walls and the average bulk densi-
ty, respectively. The midplane potential ¢¥(h /2) in Eq.
(4) is determined by requiring that the electroneutrality
condition of Eq. (5) is satisfied in each iteration. The sol-
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FIG. 1. Solvation force in a neutral liquid vs the wall separa-
tion (pg =0.50). Continuous curve, present calculation; circles,
Monte Carlo simulation.
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vation force is then obtained from Eq. (8), by substituting
the calculated component contact densities [p,(d,/2)]
for finite (h) as well as infinite wall separations. The
values of temperature and the dielectric constant used in
the calculation are T=298 K and €=78.5 (correspond-
ing to water). The dimensionless reduced quantities, viz.,
z*(=z/d,) for distance, p%=(p,d®) for density,
o*=(od?/e) for surface charge density, and
¥*(z)=Pe(z) for the potential are used as usual for con-
venience.

Although our main concern is the double layer force in
ionic solutions, as special cases we have studied the
simpler neutral liquids as well. Thus, we have considered
four cases; viz., (i) a one-component neutral liquid
(dg=d; p}=p3=0, but pJ=p,); (ii) a two-component neu-
tral liquid mixture (¢, = —g,=0; d, =d,#d; p=p3#0
and pd+#0); (iii) a symmetric RPM electrolyte (g, = —q,;
d,=d,; pd=p3#0, but pd=0); and (iv) a symmetric
MSM electrolyte (g, = —gq,; d,=d,=d,; p}=pJ#0 and
p8=#0). In the neutral liquid mixture of case (ii), the com-
ponents a=1 and 2 (with ¢, = —gq, =0) together are con-
sidered to represent one liquid and the component a=0
is the other liquid. In case (iii), the solvent is a continu-
um dielectric and it is the density of solvent hard spheres,
which is zero.

For the neutral liquid [case (i)], we have chosen the
bulk density and the hard-sphere diameter as p3=0.50
and d =4.2 A. The density profile is calculated as a func-

3.0

h/d 5.0

FIG. 3. Solvation force in a neutral liquid mixture vs the wall

separation (p%

% =0.10, p%*=0.30, dy/d ,=1.2). Continuous

curve, present calculation; circles, calculation by Grimson (Ref.
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FIG. 5. The double layer force in a 2:2 RPM electrolyte vs
the wall separation (¢ =0.971M, o *=0.10). Continuous curve,
present calculation; circles, Monte Carlo simulation.
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FIG. 6. The double layer force in a 2:2 RPM electrolyte vs
the wall separation (¢ =0.971M, o*=0.30). Continuous curve,
present calculation; circles, Monte Carlo simulation.
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tion of the wall separation 4 and the solvation force ob-
tained thereby is plotted in Fig. 1. Also shown are the re-
sults of Monte Carlo simulation [22], which clearly show
quite good overall agreement. The force shows oscilla-
tions between repulsion and attraction, with a periodicity
close to the value of the hard-sphere diameter, which
clearly suggests that the phenomenon is a consequence of
packing in a restricted region. To obtain further insight
into this aspect, we have plotted in Fig. 2 the density
profiles at selected values of the wall separation, along
with the corresponding simulation results which show
very good agreement. The changes in the appearance of
structure as h is varied are well correlated with the oscil-
lations in the force curve of Fig. 1.

For the hard-sphere liquid mixture [case (ii)], we con-
sider the bulk densities of the two components 4 and B
as p*%=0.10 and p;=0.30 with the diameter ratio
dp/d,=1.2, e, d,=d,=42 A, d,/d,=1.,
¢4:=—¢,=0, p3*=0.30 and p%* =pJ*=0.05 in the
present notation. The plot of the calculated solvation
force shown in Fig. 3 is compared with the calculations
of Grimson [27], since simulation results are not avail-
able. Here, the solvation force is contributed by two con-
tact densities corresponding to two different distances
from each wall, as is clear from the plots of the density
profiles at several values of 4 shown in Fig. 4. The depen-
dence of the periodicity of the oscillating force on the di-
ameter ratio of the two components can be understood
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from the nature of the oscillations of the two component
densities of Fig. 4. In both these cases of neutral liquid
and the mixture, the force is repulsive at a very short dis-
tance and then alternates between attraction and repul-
sion as h is increased.

For an RPM electrolyte [case (iii)], we have chosen a
2:2 electrolyte of concentration C =0.971M, the hard-
sphere radius d,=d,=4.2 A, and two cases of surface
charge densities 0*=0.1 and 0*=0.3. The calculated
solvation forces plotted as a function of 4 in Figs. 5 and 6
show quite good (especially at higher o*) overall agree-
ment with the simulation results of Valleau, Ivkov, and
Torrie [23], also shown in the figures. Here also, the
force is repulsive at a very short distance, but as 4 in-
creases, it passes through attractive and repulsive re-
gions, finally remaining attractive at higher 4. The densi-
ty distributions of both the ions corresponding to
0*=0.10 and o *=0.30 are plotted in Figs. 7 and 8, re-
spectively, and the results of Fig. 8 are also shown to
agree quite well with the simulation results [23]. The in-
teresting phenomena of charge inversion in the density
profiles as s increases provides an explanation of the os-
cillatory nature of the forces in Figs. 5 and 6.

For the MSM electrolyte [case (iv)], we have chosen
the same system parameters as in case (iii), but with the
additional bulk density pd*=0.8 corresponding to the
solvent hard spheres. The calculated forces plotted in
Fig. 9 show pronounced oscillations as compared to the
RPM electrolyte (see Fig. 5). The corresponding density
oscillations as plotted in Fig. 10 are also much enhanced
(compare Fig. 7), which is also clearly reflected in the
highly oscillatory nature of the force. An interesting
feature of the MSM is that in Fig. 9, the force is attrac-
tive at smaller A in contrast to the repulsive behavior ob-
served in Figs. 1, 3, 5, and 6. This is a direct conse-
quences of accumulation of large excess of counterions
near the wall for small wall separation (see the trends in
the density plots of Fig. 10). Although the density plots
in Fig. 10 could not be compared with simulation results,
an important effect due to the presence of neutral hard
spheres in MSM is that even the co-ions accumulate near
the surface in contrast to only depletion observed for
RPM (see Figs. 6 and 8).

IV. CONCLUDING REMARKS

The nonlocal weighted density-functional approach
proposed recently [11-13] for nonuniform ionic solutions
is shown here to be able to predict the main features of
the solvation or structural forces in ionic (and also neu-
tral) liquids, justifying the suitability of the approxima-
tions used [28]. The calculated solvation forces in all
cases are of a decaying oscillatory nature with a periodi-
city roughly equal to the sizes of the ions or the solvent
molecules. This establishes the role of volume exclusion
due to the finite size of the molecules in a restricted space
in determining the oscillations of the force. Insight is
also obtained into the relative importance of the hard-
sphere and electrostatic correlations through the varia-
tion in the surface-induced density inhomogeneities as a
function of the distance between two walls immersed in
neutral and ionic liquids.

The present formalism and the results are directly ap-
plicable for the calculation of the interaction between col-
loidal particles [20], since the surface of the colloidal par-
ticles can be considered to be planar due to their large
size in comparison with the solvent molecules. Lowen,
Hansen, and Madden [21] have recently calculated the
force between colloidal macroions through a different
density-functional approach for a point charge model of
the counterions and reported a Car-Parrinello-type simu-
lation of colloidal suspension. While the approach of
Loéwen, Hansen, and Madden [21] as well as the present
one incorporate many-body effects through a self-
consistent density-functional formalism, our concern has
been to study the effect of finite size of the ions and the
solvent molecules on the solvation force. We are current-
ly extending the formalism to the case of dipolar hard
spheres to represent a polar solvent like water and it
would also be worthwile to investigate whether the sur-
face induced inhomogeneity affects the solvation dynam-
ics in a dipolar liquid.
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